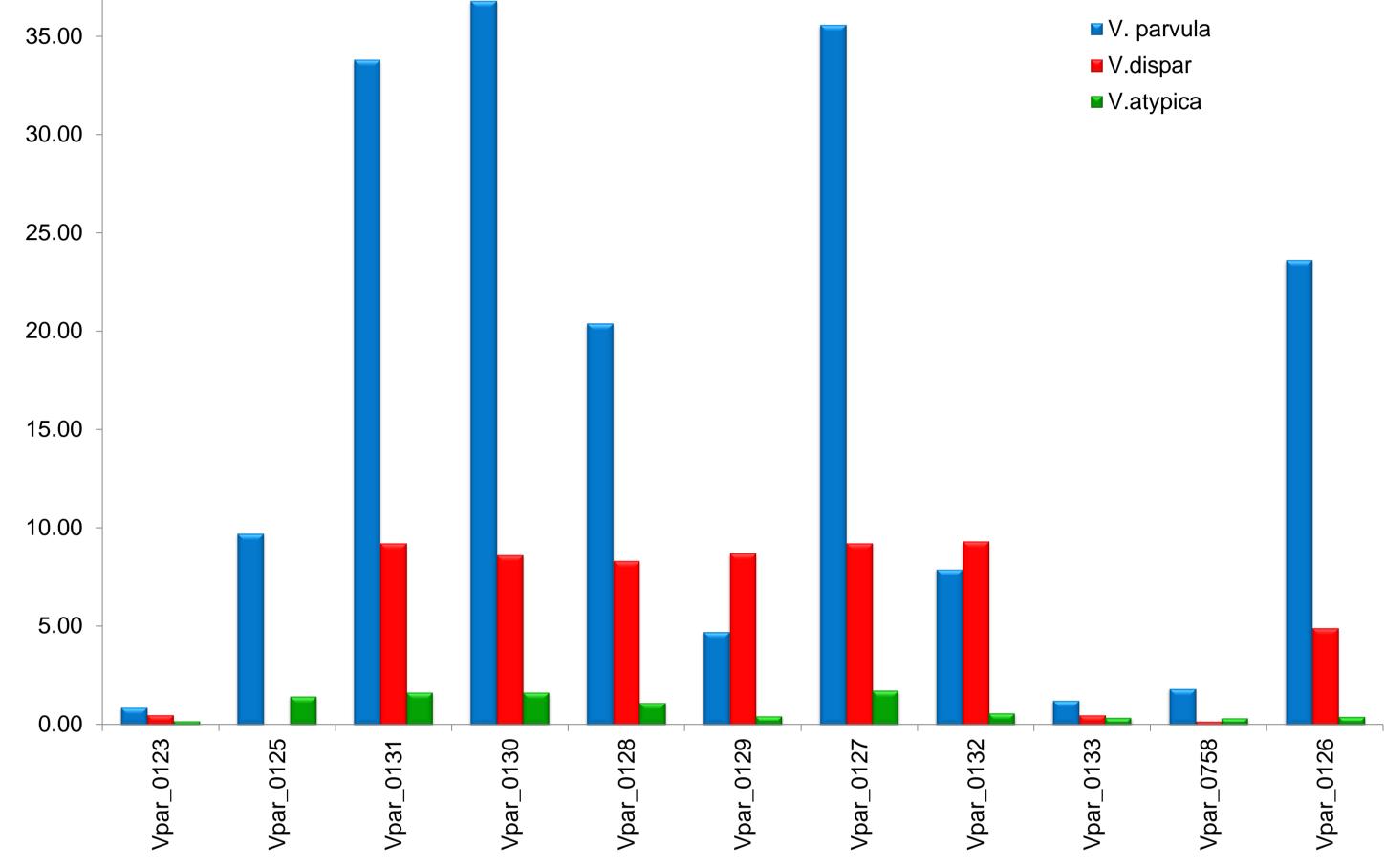
Leeds Dental Institute FACULTY OF MEDICINE AND HEALTH

Meta-transcriptomic analysis of three oral Veillonella spp.

<u>Thuy Do¹, Tonnie Mulli², Francis Hughes² and David Beighton^{1,3}</u> ¹Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, U.K. ²Periodontology, ³Microbiology, Dental Institute, King's College London, London, U.K. ¹Email: N.T.DO@leeds.ac.uk

Introduction

Veillonella are Gram-negative, small cocci, isolated from the oral cavity


40.00 -]			

and intestinal tract of humans and animals, that gain energy from the utilization of short-chain organic acids particularly lactate and succinate. Only 3 of the human oral *Veillonella* have been sequenced (*V. parvula, V. dispar* and *V. atypica*), these were used in this study, to investigate the level of genes expressed by these bacteria in both infected dentine from carious lesions and saliva from caries-free subjects.

We aimed to better understand the basis for the differential intra-oral distribution of these 3 predominant *Veillonella* species, using a meta-transcriptomic approach.

Materials and Methods

Eleven independent samples (carious dentine and wax stimulated saliva) were obtained for each group and total RNA was extracted using the UltraClean® Microbial RNA isolation kit (MOBIO Laboratories, inc.) (>100ng per sample). RNA was processed using the Illumina® TruSeq[™] RNA Sample Preparation Kit and 76bp paired end sequencing was carried out. FASTQ files were imported into CLC Genomic Workbench and the reads mapped to individual genes in 144 annotated bacterial genomes. Reads mapping to *V. parvula* DSM2008, *V. dispar* ATCC 17748 and *V. atypica* ACS-0049-V- Sch6 were extracted, rRNA genes reads were removed, the level of gene expression was calculated as (number of transcript reads count/gene length [in kbases]/total reads count [in millions]) and compared using t-tests and a FDR correction (Benjamini and Hochberg) applied with p<0.01 regarded as significant.

Fig.1: Comparison between up-regulated genes in caries, involved in the histidine biosynthesis pathway, in the 3 *Veillonella* species. Y-axis: Ratio between the mean expression value in caries and in health. X-axis: the up-regulated genes listed are as follows, histidinol-phosphatase [Vpar_0123], ATP phosphoribosyltransferase [Vpar_0125], phosphoribosyl-ATP pyrophosphatase [Vpar_0131], Phosphoribosyl-AMP cyclohydrolase [Vpar_0130], phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase [Vpar_0128], imidazole glycerol phosphate synthase cyclase subunit [Vpar_0129], imidazoleglycerol-phosphate dehydratase [Vpar_0127], histidinol-phosphate aminotransferase [Vpar_0132], imidazole glycerol phosphate synthase amidotransferase subunit [Vpar_0133], histidinol-phosphate phosphatase [Vpar_0758], histidinol dehydrogenase [Vpar_0126].

Results and Discussion

In total, 148 genes were found to be significantly up-regulated in *V. parvula* in the carious lesions, while only 46 were up-regulated in *V. dispar*, and 37 in *V. atypica* (data not shown). Some of these genes have been identified as stress-associated (such as chaperonin, heat shock protein and putative peroxide-responsive repressor proteins). In all three species, the genes with the greatest level of expression and up-regulation were those coding for the alpha- and beta-subunits of hydro-lyase, Fe-S type, tartrate/fumarate subfamily protein; these are involved in the production of ATP through catabolism of lactate and succinate (Table 1).

In *V. parvula,* the analysis of genes involved in histidine (His) biosynthesis pathway showed their involvement in the conversion of ribose 5-phosphate to His, especially with the up-regulation of ATP phosphoribosyltransferase, which has a central role in His biosynthesis (Fig. 1).

It can be speculated that the up-regulation of the His operon results in increased intra-cellular levels of His which may contribute to intracellular buffering capacity, hence allowing for intracellular pH control. this may explain the ability of *V. parvula* to be better fitted to growth and proliferation in the acidic environment of carious lesions compared to the other two species.

	V. parvula				V. dispar			V. atypica				
Gene: RAST annotation	Feature ID	C_mean	H_mean	C/H	Feature ID	C_mean	H_mean	C/H	Feature ID	C_mean	H_mean	C/H
L-lactate permease	Vpar_1596	600	667	0.90	VEIDISOL_00332	4164	620	6.50	HMPREF9321_1885	33	133	0.25
L-lactate dehydrogenase (EC 1.1.1.27)	Vpar_0498	303	123	2.46	VEIDISOL_01515	15	71	0.22	HMPREF9321_0650	4581	885	5.18
Predicted L-lactate dehydrogenase, hypothetical protein subunit YkgG	Vpar_1650	1389	535	2.60	VEIDISOL_00251	506	880	0.61	HMPREF9321_1533	1112	1641	0.68
Predicted L-lactate dehydrogenase, Iron-sulfur cluster- binding subunit YkgF	Vpar_1651	1800	1204	1.49	VEIDISOL_00250	582	1875	0.33	HMPREF9321_1532	1363	1721	0.79
Predicted L-lactate dehydrogenase, Fe-S oxidoreductase subunit YkgE	Vpar_1652	1023	767	1.33	VEIDISOL_00249	365	1185	0.33	HMPREF9321_1531	399	1162	0.34
Predicted D-lactate dehydrogenase, Fe-S protein, FAD/FMN-containing	Vpar_1768	418	51	8.23	VEIDISOL_00136	565	77	7.44	HMPREF9321_1748	1037	102	10.15
Pyruvate carboxyl transferase (EC 6.4.1.1)	Vpar_0752	753	382	1.97	VEIDISOL_01339	232	272	0.90	рус	225	292	0.77
Malate dehydrogenase (EC 1.1.1.37)	Vpar_1595	4526	1859	2.43	VEIDISOL_00334	10806	1782	5.58	HMPREF9321_0649	9963	2472	4.03
L(+)-tartrate dehydratase beta subunit (EC 4.2.1.32)	Vpar_1291	6912	17	417.76	VEIDISOL_00680	11039	17	689.18	HMPREF9321_1448	22784	62	370.44
L(+)-tartrate dehydratase alpha subunit (EC 4.2.1.32)	Vpar_1292	8034	68	117.87	VEIDISOL_00679	5568	27	213.95	HMPREF9321_1447	23279	56	413.72
Fumarate hydratase class I, aerobic (EC 4.2.1.2); L(+)- tartrate dehydratase alpha subunit (EC 4.2.1.32)	Vpar_1528	2072	109	19.08	VEIDISOL_00416	391	446	0.91	HMPREF9321_1100	19053	780	24.43
Fumarate hydratase class I, aerobic (EC 4.2.1.2); L(+)- tartrate dehydratase beta subunit (EC 4.2.1.32)	Vpar_1529	1429	219	6.53	VEIDISOL_00417	699	337	2.20	HMPREF9321_1099	1568	367	4.27
Succinate dehydrogenase iron-sulfur protein (EC 1.3.99.1)	Vpar_1704	3073	358	8.59	VEIDISOL_00198	8369	871	9.71	HMPREF9321_1671	3060	614	4.98
Succinate dehydrogenase flavoprotein subunit (EC 1.3.99.1)	Vpar_1705	1791	170	10.53	VEIDISOL_00197	1859	561	3.37	HMPREF9321_1672	10689	788	13.56
Acetyl-CoA hydrolase(EC:3.1.2.1)	Vpar_1249	2377	844	2.82	VEIDISOL_00776	2324	2452	0.93	HMPREF9321_1481	1766	2604	0.68
B12 binding domain of Methylmalonyl-CoA mutase (EC 5.4.99.2)	Vpar_1247	3315	608	5.46	VEIDISOL_00778	1173	3564	0.35	HMPREF9321_1483	2209	5552	0.40
Methylmalonyl-CoA mutase (EC 5.4.99.2)	Vpar_1248	4230	3963	1.07	VEIDISOL_00777	3158	3775	0.88	HMPREF9321_1482	8624	6089	1.42
Methylmalonyl-CoA epimerase (EC 5.1.99.1)	Vpar_1245	2562	1236	2.07	VEIDISOL_00780	2893	2090	1.41	mce	2285	2932	0.78
methylmalonyl-CoA decarboxylase delta-subunit	Vpar_1244	4688	2773	1.69	VEIDISOL_00782	2418	1070	2.26	HMPREF9321_1487	2017	2398	0.84
Methylmalonyl-CoA mutase (EC 5.4.99.2)	Vpar_1762	1940	1507	1.29	VEIDISOL_00143	3190	1680	1.95	HMPREF9321_1740	9651	4962	1.94
methylmalonyl-CoA mutase, large subunit (EC:5.4.99.2)	Vpar_1763	2307	2768	0.83	VEIDISOL_00144	748	1283	0.62	HMPREF9321_1741	64	200	0.32

Conclusion

Veillonella spp. seem to respond similarly within carious lesions to high lactate levels and low pH.

V. parvula exhibited a distinct method of intracellular pH control not evident in the other two species investigated which might explain its preponderance in carious lesions and the reduced ability of *V. atypica* and *V. dispar* to proliferate in this acid environment.

Table 1: List of significantly up-regulated genes in *V. parvula, V. dispar* and *V. atypica,* in caries, that are involved in the catabolism of lactate and succinate. The table includes the genes' feature ID, the calculated mean expression value in caries lesions (C_mean), the calculated mean expression value in stimulated saliva samples from healthy volunteers (H_mean), the ratio between C_mean and H_mean (C/H), and the p values resulted from the corrected t-test p values (Sig.).

Acknowledgement: Partly funded by the Biomedical Research Centre, Guy's and St Thomas Foundation Trust, U.K.

